Current & Emerging Therapy for Neovascular AMD

Jennifer I. Lim, M.D.
Professor of Ophthalmology
Marion H. Schenk, Esq. Chair in Ophthalmology
University of Illinois at Chicago
Director of the Retina Service

SUNY CME Program, Atlantic City, Revel, January 10, 2014
Neovascular AMD: Current and Emerging Treatments

- Anti-VEGF: Ranibizumab, Bevacizumab, Aflibercept (VEGF Trap)
- Treatment Paradigms
- Combination Therapy with anti-VEGF plus:
 - Anti-Complement
 - Anti-Endothelial cell
 - Anti-Pericyte
 - Radiation Therapy

JI Lim, MD
Ranibizumab (Lucentis) Trials
Mean Change in Visual Acuity Over Time

ETDRS letters

Month

ANCHOR
MARINA

PIER

+11.3
+8.5
+10.5
+20.0 letter difference*

-0.2
-9.5
-16.3

-20.8 letter difference*
EXCITE Trial: Ranibizumab Quarterly Vs. Monthly Dosing

- Ranibizumab x 3 monthly doses then fixed quarterly compared with monthly ranibizumab (0.3 mg)
- Better than PIER but inferior to monthly dosing
- Mean change at 12 months:
 - + 8.3 letters in ranibizumab 0.3 mg monthly
 - + 4.9 ranibizumab 0.3 mg quarterly
 - + 3.8 ranibizumab 0.5 mg quarterly

JI Lim, MD
HORIZON: PRN DOSING
Mean Change in Visual Acuity from Initial Baseline

Vertical bars are ± one standard error of the mean. All observed data through 2 years in HORIZON. Month 27 had fewer samples. Ranibizumab Untreated=never received ranibizumab. Benz M. AAO, 2009.
SAILOR: PRN Dosing
Mean Change in Visual Acuity over Time*

*Results are reported using the last observation carried forward (LOCF) to account for missing data and early dropouts.
VEGF Trap (Aflibercept, Eylea)

- Binds VEGFR1 and VEGFR2
- Bind all forms of VEGFA and Placental Growth Factor (PlGF)
- Phase I systemic delivery completed – not pursued

JI Lim, MD
VIEW 1 & 2
Study Design

Multi-center, active controlled, double masked trial
VIEW 1 N=1217; VIEW 2 N=1240

Patients randomized 1:1:1:1

VEGF Trap-Eye
- 2 mg q4 wks
- 0.5 mg q4 wks
- 2 mg q8 wks

Ranibizumab
- 0.5 mg q4 wks

Primary endpoint:
Maintenance of vision(<15 ETDRS letters lost)

Dosing through Year 1
Capped-PRN through Year 2

Key Secondary endpoint:
Mean change in BCVA

Non-inferiority design
VIEW 1 & 2
Primary Endpoint: Prevention of Moderate Vision Loss

All doses of VEGF Trap-Eye were non-inferior to ranibizumab

*Compared to baseline; LOCF; VIEW 1 pps: Rq4 n=269; 2q4 n=285; 0.5q4 n=270; 2q8 n=265
VIEW 2 pps: Rq4 n=269; 2q4 n=274; 0.5q4 n=268; 2q8 n=270
VIEW 1, VIEW 2 & Integrated
Mean Change in Visual Acuity Compared to Baseline

VIEW 1

VIEW 2

Integrated

\[*P = 0.0054\]
\[\dagger P = NS\]

vs. Rq4
Bevacizumab (Avastin)

- Off-label use for AMD
- Intravitreal injection 1.25 mg in 0.05 ml
- Community: widespread use
- Studies comparing ranibizumab (Lucentis) and bevacizumab (Avastin):
 - CATT (US), IVAN (UK), VIBERA (Germany), LUCAS (Norway), MANTA (Austria), GEFAL (France)
CATT Study

• Non-inferiority Trial
• 1208 patients with neovascular AMD
• Randomized to intravitreal injections of ranibizumab or bevacizumab on either a monthly or PRN schedule with monthly evaluations
• Primary outcome = mean change in visual acuity at 1 year, with a non-inferiority limit of 5 letters

JI Lim, MD

JI Lim, MD
CATT 1 Year Results

Monthly vs PRN Ranibizumab: Non-inferior
Monthly vs PRN Bevacizumab: Inconclusive

JI Lim, MD
CATT 1 Year Results

Mean decrease in central OCT thickness was greater in ranibizumab-monthly (196 μm) than other groups (152 to 168 μm, P=0.03 by analysis of variance).

JI Lim, MD
CATT Safety Results

• Rates of death, MI, and stroke were similar for patients receiving either bevacizumab or ranibizumab (P>0.20)
• Proportion of patients with systemic SAEs (primarily hospitalizations) was higher with bevacizumab than with ranibizumab: 24.1% vs. 19.0%; risk ratio, 1.29 (95% confidence interval, 1.01 to 1.66)
• Excess events broadly distributed in disease categories not identified in previous studies as areas of concern.

JI Lim, MD
CATT 2 Year Results

- Benefit of monthly lost in year 2 when switched to PRN dosing
- Monthly Rx had best results

The CATT Research Group. ARVO 2012.

JI Lim, MD
Treat and observe

• Initial monthly treatment until resolution of SRF and cysts on OCT

• Re-evaluate monthly x 3 for recurrence: check OCT

• If recurs, then monthly treatment until “dry”
Treat and observe

- If patient shows subjective response but has active CNV on exams:
 - Continue with current Rx
 - Consider adjunctive Rx or shorten dosing interval
- If subfoveal fibrosis develops then stop treatment.
Treat and Extend Regimen

- 3 Initial monthly treatments
- Monthly Rx until stabilized (dry OCT)
- Then return in 6 weeks and Re-Rx regardless of findings
- If stable, then return and Re-Rx in 7-8 weeks
- If renewed disease, shorten interval

JI Lim, MD
Treat and Extend Regimen

- Reduced treatment burden
- Number of office visits and injections was reduced 25-50% compared with monthly regimen
- No macular hemorrhages noted on retrospective review

JI Lim, MD
Treat and Extend Regimen vs PRN (Treat and Observe)

- Retrospective study (N=90)
- 52 PRN and 38 T & E arm

<table>
<thead>
<tr>
<th>1 year:</th>
<th>PRN</th>
<th>T & E</th>
</tr>
</thead>
<tbody>
<tr>
<td># Letters Gained</td>
<td>2.3 (± 17.4)</td>
<td>10.8 (± 8.8)</td>
</tr>
<tr>
<td>p=0.036</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Rx</td>
<td>5.2 (± 1.9)</td>
<td>7.8 (± 1.3)</td>
</tr>
<tr>
<td>p<0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

JI Lim, MD
Conclusions

- Monthly/ close follow-up is key
- Better VA results are seen with:
 - Close follow-up: exam and OCT
 - Lower threshold for re-Rx
- No proven alternate dosing regimen
- Educate the patient
- Safest = “on label” treatment to achieve results
- Off-label – monthly bevacizumab

JI Lim, MD
Rationale for Combination Therapy

- Achieve synergy to improve VA outcomes and reduce treatment burden
- Combine anti-angiogenesis drugs with different mechanisms of action: upstream and downstream inhibition
- Combine anti-angiogenic drugs with drugs that have other mechanisms of action
Combination Therapy

- Anti-angiogenic combined with:
 - PDT to occlude vessels
 - Anti-inflammatory agent
 - VEGF overexpression occurs with inflammation
 - Limit fibrosis
 - Radiation
 - Anti-pericytes: Anti-PDGF
 - Immunomodulator: Complement inhibitor
 - Anti-endothelial cell agents
Ranibizumab + PDT: DENALI

- Phase 3b
- N = 318
- 45 sites US, 8 CDN
- *Lucentis™ prn assumes Lucentis™ at baseline, mo 1 and 2 then prn
- Visudyne® at baseline and q3 months PRN
- Monthly follow-up until all reach 12 mo (changed from 24 months)

Purpose:
- Combo not inferior to monthly Lucentis™?
- 3 month Rx free interval after month 2 to month 11

Investigator determines eligibility

Any lesion composition

Randomized 1:1:1

- Ranibizumab*
- Ranibizumab*
- Ranibizumab† Monthly

Verteporfin_{SF} Verteporfin_{RF}

Same day Rx for combination arms
DENALI Trial: 12 months

- Non-inferiority trial
- *Did not demonstrate non-inferiority (margin = 7 letters)*
- Mean VA at 12 months:
 - 5.3 letters in std fluence PDT + Ranibizumab
 - 4.4 letters in reduced PDT + Ranibizumab
 - 8.1 letters for Ranibizumab
Ranibizumab + PDT: MONT BLANC Trial

- Phase 2 Non-inferiority trial of 255 pts.
- PDT + Ranibizumab vs. Ranibizumab + Sham
- 3 loading doses Ranibizumab then PRN
- VA results (12 months) were non-inferior (margin = 7 letters)
- No difference after month 2 of Rx-free interval of at least 3 months (85% vs. 72% with at least 4 month Rx-free interval after month 2)

JI Lim, MD
MONT BLANC Trial: 12 months

- Median time to first re-Rx after month 2 was extended only by 1 month
- Combo group received 4.8 Ranibizumab Rx vs. 5.1 in monotherapy group
- 1.7 PDT vs. 1.9 sham Rx
- No decrease of treatment burden shown
PDT + Dex + Ranibizumab: Triple Therapy RADICAL Trial

Any lesion composition

Randomized 1:1:1:1

Verteporfin VLF 180mW/cm²
Verteporfin RF 300mW/cm²
Verteporfin RF300mW/cm²
Dex 0.5mg
Dex 0.5mg
Ranibizumab 0.5mg
Ranibizumab 0.5mg
Ranibizumab 0.5mg
Ranibizumab 0.5mg
n=40 n=40 n=40 n=40

- Phase 2
- Single-masked
- Lucentis at baseline, M1, M2, then PRN
- Combo therapy at baseline, then intervals of > 2 months PRN
- Visudyne followed within 2 hr by intravitreals and then Dexamethasone
- Dexamethasone = shorter acting, more potent, less chance of elevated IOP, transparent
- **Purpose:** Does combo decrease re-Rx compared to monotherapy with similar VA and safety?
RADICAL Trial: 12 months

- 162 pts., Phase 2
- Reduced # retreatments with similar VA

<table>
<thead>
<tr>
<th></th>
<th>Triple therapy, VLF</th>
<th>Triple therapy, RF</th>
<th>Double therapy RF</th>
<th>Ranibizumab Monotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>39</td>
<td>39</td>
<td>43</td>
<td>41</td>
</tr>
<tr>
<td>Mean re-Rx</td>
<td>4.0 (p=0.04)</td>
<td>3.0 (p<0.001)</td>
<td>4.0 (p=0.04)</td>
<td>5.4</td>
</tr>
<tr>
<td>Mean VA improvement</td>
<td>3.6 (p=0.38)</td>
<td>6.8 (p=0.94)</td>
<td>5.0 (p=0.63)</td>
<td>6.5</td>
</tr>
<tr>
<td>Difference, CI</td>
<td>-2.9 (-9.5, 3.6)</td>
<td>0.3 (-6.2, 6.7)</td>
<td>-1.6 (-8.0, 4.9)</td>
<td></td>
</tr>
</tbody>
</table>

JI Lim, MD
RADICAL Trial: 24 months

- Triple therapy with \(\frac{1}{2} \) fluence group had mean of 4.2 re-treatment visits versus 8.9 Ranibizumab monotherapy (\(p<0.001 \)). (Better than 12 months 3 vs. 5.4)

- Mean VAs were not significantly different among the groups although the sample sizes were insufficient to draw definitive conclusions regarding VA outcomes.

- Decreased treatment burden
Combination Studies: Anti-VEGF + Radiation

- Beta particle radiation:
 - 24 Gy EpiRAD device PPVx
 - Sr90 source
 - MERITAGE Study
 - CABERNET and MERLOT

- Oraya I-Ray
 - Stereotactic delivery of low-energy X-rays
 - INTREPID study (I-Ray plus aNti-VEGF TREatment for Patients wIth Wet AMD)

JI Lim, MD
Anti-VEGF + Beta Particle Radiation:

- 24 Gy EpiRad + Ranibizumab vs. Ranibizumab (2:1)

- **CABERNET Study** = Treatment-naïve AMD pts.
 - N= 450 completed in Nov 2009
 - Did NOT meet primary or secondary endpoints

- **MERLOT Study** = Chronic treatment AMD pts.
 - Target N= 363 in UK

CNV Secondary to AMD Treated with Beta Radiation Epiretinal Therapy

MERLOT (Macular EpiRetinal Brachytherapy versus Lucentis® Only Treatment)

JI Lim, MD
Anti-VEGF + Beta Particle Radiation: MERITAGE Study Results

• Previously treated patients: N= 53 (minimum of 5 anti-VEGF in prior 12 months or 3 in prior 6 months)
• Mean # anti-VEGF Rx = 3.49 vs. 12.5 prior to entry at 1 yr. and mean of 8.7 Rx by 2 years
• 81% stabilized VA at 1 yr.; 68% at 2 yrs.
 • Mean visual acuity = -4.0 ± 15.1 letters at 1 yr., -6.3 ± 18.9 letters at 2 yrs.
 • One case of nonproliferative radiation retinopathy at 2 yrs.

Dugel PU et al. Ophthalmology 2012

JI Lim, MD
Combination Studies: INTREPID study

- Oraya I-Ray
 - 16Gy and 24 Gy results positive
 - Reduction in median number of anti-VEGF re-Rx in previously treated patients at one year

- 25% reduction in number of Re-Rx maintained at 2 years

Jackson TL et al. Ophthalmology 2013
Anti-VEGF + Anti-PDGF B

- PDGF-B regulates the recruitment of pericytes
- Pericytes are required for vessel maturation
- E10030 (Ophthotech) = anti-platelet-derived growth factor (anti-PDGF-B) aptamer
- Phase 1 study of combination with ranibizumab showed safety
Anti-VEGF + Anti-PDGF B

• Phase 1
 – Mean gain of 14 letters at 12 weeks
 – 59 % gained 15 or more letters
 – 100 % patients showed vascular regression
 – Mean decrease 86 % of CNV

• Phase 2 trial is recruiting patients with AMD and classic CNV to test hypothesis of synergistic effects.

Boyer DS, Ophthotech Anti-PDGF in AMD Study Group. Combined Inhibition of Platelet Derived (PDGF) and Vascular Endothelial (VEGF) Growth Factors for the Treatment of Neovascular Age-Related Macular Degeneration (NV-AMD). Results of a Phase 1 Study. ARVO paper May 4, 2009
Activated endothelial cell survival requires α5β1 integrin (transmembrane protein) interaction with ECM ligand fibronectin.

Volociximab (Ophthotec) is a human/murine chimeric monoclonal antibody to α5β1.
Anti-VEGF + Anti-integrin

- Ranibizumab + Volociximab (Ophthotec) phase 1 Study

- At 8 weeks:
 - 9.1 letter gain
 - CST OCT decreased from 361 to 246 µ
 - 23 % gained 15 letters or more
Anti-VEGF + Anti-Endothelial Cell Drug Combinations

- Sphingosine-1 phosphate (S1P) inhibition by monoclonal antibodies results in inhibition of retinal NV and CNV in animals + reduced inflammation and fibrosis. (Xie B et al. J Cell Physiol 2009;218:192-198.)

- Nicotinic acetylcholine receptor (nAChR) inhibition suppressed laser induced CNV in animals. (Kiuchi K et al. IOVS 2008;49:1705-1711)
 - ATG003 (CoMentis; topical) in combination with anti-VEGF Phase 1 done
 - Phase 2 in progress
Other Anti-VEGF Combinations

- Ranibizumab + Complement Inhibitors
 - ARC1905 aptamer (Ophthotec)
 - Anti-C5: Phase 1 study
 - POT4- anti-C3 ASaP1 showed evidence of safety
Combination Therapies for Neovascular AMD in 2014

- Combination therapy has not yet shown VA superiority to anti-VEGF monotherapy in phase 3 studies
- Combination therapy (DENALI, RADICAL, MERITAGE) may decrease the number of anti-VEGF injections
- New Combinations hold promise
Current and Novel Therapies for Neovascular AMD in 2014

- Anti-VEGF drugs: Ranibizumab, Aflibercept and Bevacizumab
- Treat & Observe monthly vs. Treat & Extend
- Combination therapy with Anti-VEGF and
 - PDT + Anti-inflammatory agent
 - Radiation
 - Anti-pericytes: Anti-PDGF
 - Anti-endothelial cell agents
Thank you!
Financial Disclosure

• Consultant: Quark, Regeneron, TWI, Santen
• Lecture fees: Genentech, Regeneron
• Grant support: ICON Bioscience, Regeneron
• Advisory Boards: Regeneron, Allergan, QLT
• DMC: Santen, Quark, Alcon

JI Lim, MD
CATT Study

- Non-inferiority Trial
- 1208 patients with neovascular AMD
- Randomized to intravitreal injections of ranibizumab or bevacizumab on either a monthly or PRN schedule with monthly evaluations
- Primary outcome = mean change in visual acuity at 1 year, with a non-inferiority limit of 5 letters

JI Lim, MD
CATT 1 Year Results

Monthly bevacizumab vs. monthly ranibizumab
Non-inferior: 8 vs. 8.5 letters gained

PRN bevacizumab vs. PRN ranibizumab
Non-inferior: 5.9 vs. 6.8 letters gained

Ji Lim, MD
CATT 1 Year Results

Monthly vs PRN Ranibizumab: Non-inferior
Monthly vs PRN Bevacizumab: Inconclusive

JI Lim, MD
Mean decrease in central OCT thickness was greater in ranibizumab-monthly (196 μm) than other groups (152 to 168 μm, P=0.03 by analysis of variance)

CATT Safety Results

- Rates of death, MI, and stroke were similar for patients receiving either bevacizumab or ranibizumab (P>0.20)
- Proportion of patients with systemic SAEs (primarily hospitalizations) was higher with bevacizumab than with ranibizumab: 24.1% vs. 19.0%; risk ratio, 1.29 (95% confidence interval, 1.01 to 1.66)
- Excess events broadly distributed in disease categories not identified in previous studies as areas of concern.

Anti-VEGF + Anti-Endothelial Cell Drug Combinations

- Integrins ανβ3 and α5β1 are upregulated in angiogenesis and interact with ECM
- α5β1 also upregulated in RPE, macrophage and fibroblast cells
- Volociximab (Ophthotec) is a human/murine chimeric monoclonal antibody to α5β1
Neovascular AMD: Current and Emerging Treatments

- Anti-VEGF: Ranibizumab, Bevacizumab, Aflibercept (VEGF Trap)
- Anti-angiogenic Agents
- Vascular Occlusion: Combretastatin A4-P
- Gene Therapy
- Combination Therapy with anti-VEGF plus:
 - Anti-Complement
 - Anti-Endothelial cell
 - Anti-Pericyte
 - Radiation Therapy
Treat and Extend

• Wills Eye Treat and Extend Study
• 92 eyes, retrospective, mean 1.5 yr follow-up
• New onset neovascular AMD
• 1 year: 96% < 3 lines loss
 32% 3 or more lines gain
 Mean # injections 8.3

Shienbaum, Gupta, Patel et al. ARVO 2009

JI Lim, MD
Treat and Extend Regimen vs PRN (Treat and Observe)

- Retrospective study (N=166 eyes of 159 pts) of Rx naïve eyes with at least 6 months f/u
- Ranibizumab N=92, bevacizumab N=74
- ETDRS gains 9.7 R vs 10 B at 2 years
- 6-8 injections in year 1

JI Lim, MD
Monthly vs. Alternative Dosing?

• Loading dose then quarterly dosing
 • PIER- an FDA approved dosing regimen
 • EXCITE- fixed quarterly dosing regimen
• PRN
 • PrONTO
 • HORIZON- extension of MARINA/ANCHOR
 • SAILOR- 3 doses + quarterly PRN
 • SUSTAIN- 3 doses + monthly PRN (VA/OCT)
• Treat and extend
 • Treat until dry, extend intervals until recurrent CNV

JI Lim, MD
% Patients with APTC Events through 1 Year

VIEW 1

<table>
<thead>
<tr>
<th></th>
<th>RBZ 0.5q4</th>
<th>VTE 2q4</th>
<th>VTE 0.5q4</th>
<th>VTE 2q8</th>
<th>All VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (safety analysis set)</td>
<td>304</td>
<td>304</td>
<td>304</td>
<td>303</td>
<td>911</td>
</tr>
<tr>
<td>Any APTC event</td>
<td>5 (1.6)</td>
<td>2 (0.7)</td>
<td>7 (2.3)</td>
<td>6 (2.0)</td>
<td>15 (1.6)</td>
</tr>
<tr>
<td>Vascular Deaths</td>
<td>1 (0.3)</td>
<td>0</td>
<td>1 (0.3)</td>
<td>4 (1.3)</td>
<td>5 (0.5)</td>
</tr>
<tr>
<td>Non Fatal MI</td>
<td>4 (1.3)</td>
<td>1 (0.3)</td>
<td>4 (1.3)</td>
<td>1 (0.3)</td>
<td>6 (0.7)</td>
</tr>
<tr>
<td>Non Fatal Stroke(^a)</td>
<td>0</td>
<td>1 (0.3)</td>
<td>2 (0.7)</td>
<td>1 (0.3)</td>
<td>4 (0.4)</td>
</tr>
</tbody>
</table>

VIEW 2

<table>
<thead>
<tr>
<th></th>
<th>RBZ 0.5q4</th>
<th>VTE 2q4</th>
<th>VTE 0.5q4</th>
<th>VTE 2q8</th>
<th>All VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (safety analysis set)</td>
<td>291</td>
<td>309</td>
<td>297</td>
<td>307</td>
<td>913</td>
</tr>
<tr>
<td>Any APTC event</td>
<td>4 (1.4)</td>
<td>4 (1.3)</td>
<td>5 (1.7)</td>
<td>8 (2.6)</td>
<td>17 (1.9)</td>
</tr>
<tr>
<td>Vascular Deaths</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>2 (0.7)</td>
<td>1 (0.3)</td>
<td>4 (0.4)</td>
</tr>
<tr>
<td>Non Fatal MI</td>
<td>2 (0.7)</td>
<td>2 (0.6)</td>
<td>2 (0.7)</td>
<td>5 (1.6)</td>
<td>9 (1.0)</td>
</tr>
<tr>
<td>Non Fatal Stroke(^b)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
<td>2 (0.7)</td>
<td>4 (0.4)</td>
</tr>
</tbody>
</table>

\(^a\) All non fatal strokes were ischemic in nature
\(^b\) Includes hemorrhagic and ischemic strokes
VIEW 1 & 2

Deaths

VIEW 1

<table>
<thead>
<tr>
<th></th>
<th>RBZ 0.5q4</th>
<th>VTE 2q4</th>
<th>VTE 0.5q4</th>
<th>VTE 2q8</th>
<th>All VTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (safety analysis set)</td>
<td>304</td>
<td>304</td>
<td>304</td>
<td>303</td>
<td>911</td>
</tr>
<tr>
<td>All Deaths*</td>
<td>5 (1.6%)</td>
<td>2 (0.7%)</td>
<td>2 (0.7%)</td>
<td>8 (2.6%)</td>
<td>12 (1.3%)</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Stroke</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cerebral Hemorrhage</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ruptured AAA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Respiratory (Pneumonia, COPD)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cancer Related</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

VIEW 2

<table>
<thead>
<tr>
<th></th>
<th>291</th>
<th>309</th>
<th>297</th>
<th>307</th>
<th>913</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (safety analysis set)</td>
<td>2 (0.7%)</td>
<td>3 (1.0%)</td>
<td>2 (0.7%)</td>
<td>2 (0.7%)</td>
<td>7 (0.8%)</td>
</tr>
<tr>
<td>All Deaths*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>1</td>
<td>1*</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cerebrovascular Accident</td>
<td>0</td>
<td>1*</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cardiopulmonary Failure</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cancer Related</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cardiac Arrest</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>